advRandWalkMinChange

title: “adverSCarial, generate and analyze the vulnerability of scRNA-seq classifiers to adversarial attacks” shorttitle: “adverSCarial” author: Ghislain FIEVET [email protected] package: adverSCarial abstract: > adverSCarial is an R Package designed for generating and analyzing the vulnerability of scRNA-seq classifiers to adversarial attacks. The package is versatile and provides a format for integrating any type of classifier. It offers functions for studying and generating two types of attacks, single gene attack and max change attack. The single gene attack involves making a small modification to the input to alter the classification. The max change attack involves making a large modification to the input without changing its classification. The package provides a comprehensive solution for evaluating the robustness of scRNA-seq classifiers against adversarial attacks. vignette: > %\VignetteIndexEntry{Vign04_advRandWalkMinChange} %\VignetteEngine{knitr::knitr} %\VignetteEncoding{UTF-8}

advRandWalkMinChange

The CHETAH classifier is not vulnerable to one gene attack on DCcluster. We can use the advRandWalkMinChange function to generate a more complex attack, still looking for a minimum change in the input.

We will find a list of genes suscpetibles to move the classification by using the findMarkers function from scran. Then we will use the advRandWalkMinChange function to shorten the list as much as possible.

Load data

library(adverSCarial)
library(TENxPBMCData)
library(CHETAH)
library(scater)
library(scran)
library(stringr)

We get two pbmc datasets, train_3k to train the CHETAH classifier, and test_4k to run the adverSCarial functions.

train_3k <- TENxPBMCData(dataset = "pbmc3k")
test_4k <- TENxPBMCData(dataset = "pbmc4k")

# Convert from ensemble id to hgnc symbol
test_4k <- sceConvertToHGNC(test_4k)
train_3k <- sceConvertToHGNC(train_3k)

cell_types_3k <- system.file("extdata", "pbmc3k_cell_types.tsv", package="adverSCarial")
cell_types_3k <- read.table(cell_types_3k, sep="\t")
colData(train_3k)$celltypes <- cell_types_3k$cell_type
colnames(train_3k) <- colData(train_3k)[['Barcode']]
colnames(test_4k) <- colData(test_4k)[['Barcode']]

Annotation of the test_4k dataset with CHETAH, and processing of the SingleCellExperiment object.

input <- CHETAHclassifier(input = test_4k, ref_cells = train_3k)
input <- Classify(input = input, 0.00001)
colData(test_4k)$celltypes <- input$celltype_CHETAH

test_4k <- logNormCounts(test_4k)
dec <- modelGeneVar(test_4k)
hvg <- getTopHVGs(dec, prop=0.1)
test_4k <- runPCA(test_4k, ncomponents=25, subset_row=hvg)
test_4k <- runUMAP(test_4k, dimred = 'PCA')
CHETAHClassifier <- function(expr, clusters, target){
    reference_3k <- train_3k
    input <- CHETAHclassifier(input = expr, ref_cells = reference_3k)
    input <- Classify(input = input, 0.01)
    final_predictions = input$celltype_CHETAH[clusters == target]
    ratio <- as.numeric(sort(table(final_predictions), decreasing = TRUE)[1]) /
        sum(as.numeric(sort(table(final_predictions), decreasing = TRUE)))
    predicted_class <- names(sort(table(final_predictions), decreasing = TRUE)[1])
    if ( ratio < 0.3){
        predicted_class <- "NA"
    }
    c(predicted_class, ratio)
}

Advanced attacks with advRandWalkMinChange

We use the advRandWalkMinChange function to generate a complex attack, looking for a minimum change of several genes in the input.

First step is to look for a list of genes suscpetibles to move the classification. We get this list by using the findMarkers function from scran.

markers <- c("IL7R", "CCR7", "CD14", "LYZ", "S100A4", "MS4A1", "CD8A", "FCGR3A", "MS4A7",
              "GNLY", "NKG7", "FCER1A", "CST3", "PPBP")

test_4k_subset <- test_4k[, test_4k$celltypes %in% c("CD14+ Mono", "DC")]
fm_t4k <- findMarkers(test_4k_subset, test_4k_subset$celltypes)
genes_4walk <- rownames(fm_t4k[['DC']][abs(fm_t4k[['DC']]$summary.logFC)>1,])

# Remove the officiel markers from the candidates
genes_4walk <- genes_4walk[!genes_4walk %in% markers]

genes_4walk
##  [1] "HLA-DRA"  "S100A12"  "HLA-DQB1" "HLA-DPA1" "HLA-DPB1" "HLA-DRB1"
##  [7] "S100A8"   "HLA-DQA1" "S100A9"   "CD74"     "VCAN"     "HLA-DMA" 
## [13] "CTSS"     "FTL"      "FCN1"     "TYROBP"   "NEAT1"

Then we define a list of modifications to test:

modifications <- list()
modifications[[1]] <- list("perc99")
modifications[[2]] <- list("perc1")

Then we process to a random walk parameter search on these genes and these modifications:

rand_walk_min_change <- advRandWalkMinChange(test_4k, colData(test_4k)$celltypes, "DC", CHETAHClassifier,
                                             genes=genes_4walk, modifications=modifications,
                                             walkLength=15, argForClassif = 'SingleCellExperiment')

head(rand_walk_min_change)
## DataFrame with 6 rows and 22 columns
##     prediction         odd genesModified typeModified   iteration     HLA.DRA
##    <character> <character>   <character>  <character> <character> <character>
## 1 UNDETERMINED    0.484375             2         TRUE          15          NA
## 2   CD14+ Mono    0.578125             3         TRUE          14          NA
## 3 UNDETERMINED         0.5             4         TRUE          13          NA
## 4 UNDETERMINED         0.5             5         TRUE          11      perc99
## 5   CD14+ Mono         0.5             7         TRUE          10      perc99
## 6 UNDETERMINED     0.59375             8         TRUE           9      perc99
##       S100A12    HLA.DQB1    HLA.DPA1    HLA.DPB1    HLA.DRB1      S100A8
##   <character> <character> <character> <character> <character> <character>
## 1          NA       perc1       perc1          NA          NA          NA
## 2          NA       perc1       perc1          NA          NA      perc99
## 3          NA       perc1       perc1          NA          NA       perc1
## 4          NA       perc1       perc1          NA          NA       perc1
## 5          NA       perc1       perc1          NA          NA       perc1
## 6          NA       perc1       perc1          NA       perc1       perc1
##      HLA.DQA1      S100A9        CD74        VCAN     HLA.DMA        CTSS
##   <character> <character> <character> <character> <character> <character>
## 1          NA          NA          NA          NA          NA          NA
## 2          NA          NA          NA          NA          NA          NA
## 3          NA          NA          NA          NA       perc1          NA
## 4          NA          NA          NA          NA       perc1          NA
## 5          NA          NA       perc1       perc1       perc1          NA
## 6          NA          NA       perc1       perc1       perc1          NA
##           FTL        FCN1      TYROBP       NEAT1
##   <character> <character> <character> <character>
## 1          NA          NA          NA          NA
## 2          NA          NA          NA          NA
## 3          NA          NA          NA          NA
## 4          NA          NA          NA          NA
## 5          NA          NA          NA          NA
## 6          NA          NA          NA          NA

The first line of rand_walk_min_change contains the parameter for the attack:

best_results <- rand_walk_min_change[1,]
best_results <- as.data.frame(best_results[6:ncol(best_results)])
best_results <- best_results[,best_results!="NA"]
best_results
##   HLA.DQB1 HLA.DPA1
## 1    perc1    perc1

Then we modify the rna expression matrix to fool the classifier:

min_change_attack_rna_matrix <- test_4k
for ( i in seq_len(length(colnames(best_results)))){
    gene2modif <- colnames(best_results)[i]
    gene2modif <- str_replace(gene2modif, "\\.", "-")
    modif <- best_results[1,i]
    min_change_attack_rna_matrix <- advModifications(min_change_attack_rna_matrix,
        gene2modif, colData(test_4k)$celltypes, "DC", advMethod=modif, argForClassif="SingleCellExperiment")
}

And we check it successfully changed the classification.

res_classif <- CHETAHClassifier(min_change_attack_rna_matrix, colData(test_4k)$celltypes, "DC")
res_classif
## [1] "UNDETERMINED" "0.484375"
sessionInfo()
## R version 4.3.0 (2023-04-21)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.1 LTS
## 
## Matrix products: default
## BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0 
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=fr_FR.UTF-8        LC_COLLATE=en_US.UTF-8    
##  [5] LC_MONETARY=fr_FR.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=fr_FR.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=fr_FR.UTF-8 LC_IDENTIFICATION=C       
## 
## time zone: Europe/Paris
## tzcode source: system (glibc)
## 
## attached base packages:
## [1] stats4    stats     graphics  grDevices utils     datasets  methods  
## [8] base     
## 
## other attached packages:
##  [1] stringr_1.5.0               scran_1.28.1               
##  [3] scater_1.28.0               scuttle_1.10.1             
##  [5] CHETAH_1.16.0               ggplot2_3.4.2              
##  [7] TENxPBMCData_1.18.0         HDF5Array_1.28.1           
##  [9] rhdf5_2.44.0                DelayedArray_0.26.3        
## [11] S4Arrays_1.0.4              Matrix_1.5-4.1             
## [13] SingleCellExperiment_1.22.0 SummarizedExperiment_1.30.1
## [15] Biobase_2.60.0              GenomicRanges_1.52.0       
## [17] GenomeInfoDb_1.36.0         IRanges_2.34.0             
## [19] S4Vectors_0.38.1            BiocGenerics_0.46.0        
## [21] MatrixGenerics_1.12.0       matrixStats_0.63.0         
## [23] adverSCarial_0.99.38        knitr_1.42                 
## 
## loaded via a namespace (and not attached):
##   [1] RColorBrewer_1.1-3            jsonlite_1.8.4               
##   [3] magrittr_2.0.3                ggbeeswarm_0.7.2             
##   [5] corrplot_0.92                 zlibbioc_1.46.0              
##   [7] vctrs_0.6.2                   memoise_2.0.1                
##   [9] DelayedMatrixStats_1.22.0     RCurl_1.98-1.12              
##  [11] base64enc_0.1-3               htmltools_0.5.5              
##  [13] AnnotationHub_3.8.0           curl_5.0.0                   
##  [15] BiocNeighbors_1.18.0          Rhdf5lib_1.22.0              
##  [17] htmlwidgets_1.6.2             plyr_1.8.8                   
##  [19] plotly_4.10.1                 cachem_1.0.8                 
##  [21] uuid_1.1-0                    igraph_1.4.2                 
##  [23] mime_0.12                     lifecycle_1.0.3              
##  [25] pkgconfig_2.0.3               rsvd_1.0.5                   
##  [27] R6_2.5.1                      fastmap_1.1.1                
##  [29] GenomeInfoDbData_1.2.10       shiny_1.7.4                  
##  [31] digest_0.6.31                 colorspace_2.1-0             
##  [33] AnnotationDbi_1.62.1          dqrng_0.3.0                  
##  [35] irlba_2.3.5.1                 ExperimentHub_2.8.0          
##  [37] RSQLite_2.3.1                 beachmat_2.16.0              
##  [39] filelock_1.0.2                fansi_1.0.4                  
##  [41] httr_1.4.6                    compiler_4.3.0               
##  [43] bit64_4.0.5                   withr_2.5.0                  
##  [45] BiocParallel_1.34.1           viridis_0.6.3                
##  [47] DBI_1.1.3                     dendextend_1.17.1            
##  [49] rappdirs_0.3.3                bluster_1.10.0               
##  [51] tools_4.3.0                   vipor_0.4.5                  
##  [53] beeswarm_0.4.0                interactiveDisplayBase_1.38.0
##  [55] httpuv_1.6.11                 glue_1.6.2                   
##  [57] rhdf5filters_1.12.1           promises_1.2.0.1             
##  [59] grid_4.3.0                    pbdZMQ_0.3-9                 
##  [61] cluster_2.1.4                 reshape2_1.4.4               
##  [63] generics_0.1.3                gtable_0.3.3                 
##  [65] tidyr_1.3.0                   data.table_1.14.8            
##  [67] metapod_1.8.0                 BiocSingular_1.16.0          
##  [69] ScaledMatrix_1.8.1            utf8_1.2.3                   
##  [71] XVector_0.40.0                RcppAnnoy_0.0.20             
##  [73] ggrepel_0.9.3                 BiocVersion_3.17.1           
##  [75] pillar_1.9.0                  limma_3.56.1                 
##  [77] IRdisplay_1.1                 later_1.3.1                  
##  [79] dplyr_1.1.2                   BiocFileCache_2.8.0          
##  [81] lattice_0.21-8                bit_4.0.5                    
##  [83] tidyselect_1.2.0              locfit_1.5-9.7               
##  [85] Biostrings_2.68.1             gridExtra_2.3                
##  [87] edgeR_3.42.2                  xfun_0.39                    
##  [89] statmod_1.5.0                 pheatmap_1.0.12              
##  [91] stringi_1.7.12                lazyeval_0.2.2               
##  [93] yaml_2.3.7                    evaluate_0.21                
##  [95] codetools_0.2-19              tibble_3.2.1                 
##  [97] BiocManager_1.30.20           cli_3.6.1                    
##  [99] uwot_0.1.14                   IRkernel_1.3.2               
## [101] xtable_1.8-4                  repr_1.1.6                   
## [103] munsell_0.5.0                 Rcpp_1.0.10                  
## [105] bioDist_1.72.0                dbplyr_2.3.2                 
## [107] png_0.1-8                     parallel_4.3.0               
## [109] ellipsis_0.3.2                blob_1.2.4                   
## [111] sparseMatrixStats_1.12.0      bitops_1.0-7                 
## [113] viridisLite_0.4.2             scales_1.2.1                 
## [115] purrr_1.0.1                   crayon_1.5.2                 
## [117] rlang_1.1.1                   cowplot_1.1.1                
## [119] KEGGREST_1.40.0